计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (34): 44-46.

• 研究、探讨 • 上一篇    下一篇

一种求解0-1背包问题的改进遗传算法

吕晓峰1,张勇亮2,马 羚2   

  1. 1.海军航空工程学院 兵器科学与技术系,山东 烟台 264001
    2.海军航空工程学院 研究生管理大队,山东 烟台 264001
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-12-01 发布日期:2011-12-01

Improved genetic algorithm to 0-1 knapsack problem

LV Xiaofeng1,ZHANG Yongliang2,MA Ling2   

  1. 1.Department of Armament Science and Technology,Naval Aeronautical and Astronautical University,Yantai,Shangdong 264001,China
    2.Brigade of Graduate Student,Naval Aeronautical and Astronautical University,Yantai,Shangdong 264001,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-12-01 Published:2011-12-01

摘要: 针对传统遗传算法(SGA)容易“早熟”的不足,提出一种求解0-1背包问题(KP)的改进遗传算法。借鉴二重结构编码的解码处理方法设计了一种新解码方法,在保证解可行性的同时修正种群中无对应可行解的个体;采用模拟退火算法和改进的精英选择算子改进SGA。实例仿真结果验证了改进遗传算法在进化效率和最优解搜索能力上的优越性。

关键词: 遗传算法, 背包问题, 解码, 模拟退火, 精英选择

Abstract: An improved Genetic Algorithm(GA) is proposed to solve 0-1 Knapsack Problem(KP) considering the deficiency of the Simple GA(SGA) that being easy to “precocity”.A new way to decode is designed to ensure solutions workable according to the way of dual-structure coding,and to revise individuals without corresponding solutions in the population at the same time.And SGA is improved by the Simulated Annealing(SA) algorithm and improved elite selection operator.The advantage of the improved GA in the evolution efficiency and the ability to search the best solution is proved by the simulation results.

Key words: Genetic Algorithm(GA), Knapsack Problem(KP), decode way, Simulated Annealing(SA), elite selection