计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (34): 199-202.

• 图形、图像、模式识别 • 上一篇    下一篇

基于互信息与类距离测度最优的图像聚类

孙越泓1,魏建香2,夏德深3   

  1. 1.南京师范大学 数学科学学院 江苏省“大规模复杂系统数值模拟”重点实验室,南京 210046
    2.南京人口管理干部学院 信息科学系,南京 210042
    3.南京理工大学 计算机科学与技术学院,南京 210094
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-12-01 发布日期:2011-12-01

Image clustering based on mutual information and cluster distances optimum

SUN Yuehong1,WEI Jianxiang2,XIA Deshen3   

  1. 1.Jiangsu Key Laboratory for NSLSCS,School of Mathematical Sciences,Nanjing Normal University,Nanjing 210046,China
    2.Department of Information Science,Nanjing College for Population Programme Management,Nanjing 210042,China
    3.School of Computer Science and Technology,Nanjing University of Science and Technology,Nanjing 210094,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-12-01 Published:2011-12-01

摘要: 模糊C均值算法用于图像聚类时,仅考虑图像的灰度信息,忽略灰度的空间分布,未充分利用分割前后图像间的关系。从分割后图像的类距离出发,并利用聚类分割前后图像间的互信息,以基于对称分布多样性的粒子群算法为优化技术,构造了一种新的图像分割方法——基于互信息和类距离测度最优的图像聚类算法。对医学图像进行仿真,实验结果表明该算法得到的图像边界清晰连续,图像的内部特征保持完好,与多种聚类算法相比,图像分割的质量明显得到提高。

关键词: 图像聚类, 互信息, 类距离, 对称分布, 粒子群优化

Abstract: When Fuzzy C-Means(FCM) is utilized for image clustering,only the gray level information is considered,ignoring the spatial distribution,so the connection between the original and segmented image is not fully used.This paper constructs a new image clustering segmentation method,which is based on the mutual information between the original and segmented image and cluster distance measure optimum of segmented image.The Particle Swarm Optimization(PSO) based on diversity of symmetrical distribution is adopted as optimization method.Simulations with the medical images by the new method reveal that the results have clear and continuous image boundary,keep complete internal image characteristics.Experimental results show that the image segmentation quality is improved obviously.

Key words: image clustering, Mutual Information(MI), cluster distance, symmetrical distribution, Particle Swarm Optimization(PSO)