计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (34): 155-157.

• 数据库、信号与信息处理 • 上一篇    下一篇

模糊粗糙集在碳通量属性约简应用研究

陈汉鸣,薛月菊,王 楷,陈 瑶,杨敬锋   

  1. 华南农业大学 南方农业机械与装备关键技术省部共建教育部重点实验室,广州 510642
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-12-01 发布日期:2011-12-01

Applied research of attribute reduction of carbon flux based on fuzzy rough set

CHEN Hanming,XUE Yueju,WANG Kai,CHEN Yao,YANG Jingfeng   

  1. Key Lab of Key Technology on Agricultural Machine and Equipment Ministry of Education,South China Agricultural University,Guangzhou 510642,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-12-01 Published:2011-12-01

摘要: 寻找碳通量的主要影响因素是摸清碳循环规律的关键环节。由于与碳通量密切相关的生态因素众多且具有不确定性,存在大量冗余信息,致使特征选择面临极大的困难。提出利用模糊粗糙集理论约简碳通量数据属性的方法,不仅能有效处理复杂不确定问题,而且善于处理连续属性。实验结果表明,用模糊粗糙集约简的属性建立BP网络的碳通量预测模型具有较高的预测精度,这充分验证了该方法能够在有效保留信息量的同时,大幅度提高约简效率。

关键词: 模糊粗糙集, 碳通量, 属性约简, 神经网络, 预测

Abstract: Finding the main factors of affecting carbon flux is the key of knowing the law of the carbon cycle.As ecological factors that closely related to carbon flux have many uncertainties and lots of redundant information,so that attribute reduction becomes difficulty.A fuzzy rough set theory has advantages of dealing effectively with complex issues and dealing with continuous attributes,and is used in reduction of carbon flux data attributes.Experimental results show that using attribute having been reduced by fuzzy rough set to establish the carbon flux prediction model based on BP network has higher prediction accuracy,and this method can increase in reduction efficiency substantially,while keeping the amount of information effectively.

Key words: fuzzy rough set, carbon flux, attribute reduction, neural networks, prediction