计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (33): 188-191.

• 图形、图像、模式识别 • 上一篇    下一篇

图像椒盐噪声的自适应滤波算法研究

高 超,须文波,孙 俊   

  1. 江南大学 信息工程学院,江苏 无锡 214122
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-11-21 发布日期:2011-11-21

Adaptive image filtering method for salt & pepper noise

GAO Chao,XU Wenbo,SUN Jun   

  1. School of Information and Technology,Jiangnan University,Wuxi,Jiangsu 214122,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-11-21 Published:2011-11-21

摘要: 为有效去除严重的椒盐噪声、更好地保护图像细节,提出了一种基于改进脉冲耦合神经网络(PCNN)的自适应去噪方法。根据PCNN神经网络的点火时刻矩阵,对受噪声污染的像素进行定位,仅对噪声像素进行类中值滤波,实现了图像细节的有效保留;根据噪声强度的估计信息,自动进行滤波次数和滤波窗口尺寸的优选,实现了图像的强自适应滤波。实验表明,与传统去噪方法相比,该方法噪声去除效果好,图像细节保持完整,而且系统具有一定的泛化能力。

关键词: 脉冲耦合神经网络, 椒盐噪声, 图像去噪, 自适应滤波

Abstract: A new adaptive de-noising method is proposed based on improved Pulse Coupled Neural Network(PCNN).Aimed at de-noising the image with serious salt & pepper noise effectively,preserving more image details,this method introduces a kind of detection mechanism of locating noised pixels based on the firing time map of PCNN,and only filters these pixels using an analogous median filter.Furthermore,it automatically selects the optimal filtering times and size of filtering window based on the estimated noise intensity to enhance the adaptability and de-noising ability of the system.Experiment results prove that the method based on the adaptive PCNN system can remove noise and preserve the details of images more effectively and completely than the conventional methods,and the strong adaptability is the main feature of the system.

Key words: pulse coupled neural network, salt &, pepper noise, image de-noising, adaptive filtering