计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (33): 162-164.

• 图形、图像、模式识别 • 上一篇    下一篇

压缩视频流关键帧快速抽取方法

李永刚,魏远旺,叶利华,朱 蓉   

  1. 嘉兴学院 计算机科学系,浙江 嘉兴 314001
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-11-21 发布日期:2011-11-21

Fast key frame extraction approach from compressed videos

LI Yonggang,WEI Yuanwang,YE Lihua,ZHU Rong   

  1. Department of Computer Science and Technology,Jiaxing University,Jiaxing,Zhejiang 314001,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-11-21 Published:2011-11-21

摘要: 关键帧获取是视频内容分析的前提。目前的视频关键帧提取算法往往需要经过较多的计算才能确定,不适合海量视频数据处理的需求。面对互联网数据流的监控应用,分析了MPEG压缩视频流的特点,提出了一种新的关键帧快速抽取方法。该方法考虑了所抽取关键帧的覆盖面和视频动态性检测的需要,根据视频长度抽取多段关键帧,段首帧反馈定位,段内按稀疏系数抽取。通过视频库和IDC机房网络数据流的检测实验表明,提出的方法是快速有效的,能较好地应用于高速网络的视频监控中。

关键词: 关键帧抽取, 压缩视频流, 自反馈定位, 运动图像专家组(MPEG)

Abstract: Key frame extraction is a premise of video content analysis.But current video key frame extraction algorithms are not suitable for mass video data processing,since they consume too much calculation time.For Internet data stream monitoring applications,a new method of key frame extraction is proposed with a detailed analysis of characteristics of MPEG compressed videos.This method takes into account the coverage of key frames extracted and the need for video dynamic testing.Key frames are extracted by segmentation based on the video length.Therefore,the position of the first key frame in the segment will be located by the feedback information,while key frames in a segment will be extracted according to the sparse coefficient.Experimental results,from video library and IDC room Internet data stream,demonstrate that this method is much more fast and effective,and thus can be specialized for high-speed network detection.

Key words: key frame extraction, compressed video, self-feedback localization, Moving Pictures Experts Group(MPEG)