计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (33): 15-17.

• 博士论坛 • 上一篇    下一篇

基于CGACO的多重分类准则模型优化研究

张庆民,吴士亮   

  1. 南京财经大学 管理科学与工程学院,南京 210046
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-11-21 发布日期:2011-11-21

Multiple classification criteria model optimization based on CGACO

ZHANG Qingmin,WU Shiliang   

  1. School of Management Science & Engineering,Nanjing University of Finance & Economics,Nanjing 210046,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-11-21 Published:2011-11-21

摘要: 为提高供应链物流管理服务水平,基于帕累托定律,运用规范列平均法和优化理论建立了基于多重分类准则模型。通过有效利用混沌遗传和蚁群优化算法在组合优化中的优势,给出了混沌遗传蚁群优化算法,采用混沌搜索优化初始群体、修正变异算子、蚁群算法寻优优化、改进相关参数等实现了两种算法的有机集成。物流案例实证表明了混沌遗传蚁群算法在解决多重分类准则优化模型方面的有效性。

关键词: 多重分类准则, 混沌映射, 遗传算法, 蚁群算法

Abstract: To improve the service level in logistics supply chain management,a multiple classification criteria model is improved based on the Pareto’s law,standard column average method and optimization theory.Through merging the advantage of Chaos Genetic Optimization(CGO) and Chaos Ant Colony Optimization(CACO) algorithm,a Chaos Genetic and Ant Colony Optimization(CGACO) algorithm is designed in solving combinatorial optimization problems.The initial colony is produced,mutation operator is modified,the ant colony algorithm is optimized and related parameters in the algorithm are improved by chaos search optimization to achieve arithmetic’s organic integration.A logistics simulation example shows that the CGACO algorithm is valid in solving multiple classification criteria model problems.

Key words: multiple classification criteria, chaos mapping, genetic algorithm, ant colony algorithm