计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (33): 106-108.

• 数据库、信号与信息处理 • 上一篇    下一篇

改进PSO-SVM在说话人确认中的应用

景新幸1,杨艺敏2,刘 涛2   

  1. 1.桂林电子科技大学 信息与通信学院,广西 桂林 541004
    2.桂林电子科技大学 信息科技学院,广西 桂林 541004
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-11-21 发布日期:2011-11-21

Application of improved PSO approach in speaker verification

JING Xinxing1,YANG Yimin2,LIU Tao2   

  1. 1.Information & Communication College,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China
    2.Institute of Information Technology,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-11-21 Published:2011-11-21

摘要: 针对粒子群算法容易过早出现早熟收敛问题,提出一种改进的PSO算法。在当前粒子陷入局部最优时,该算法根据平均粒距对部分粒子以一定的概率进行变异,从而扩大粒子群的全局搜索能力。将改进的PSO算法用来训练支持向量机,并应用在说话人识别系统中。通过实验证明改进的PSO算法在收敛速度和识别精度上都得到了改善。

关键词: 说话人识别, 粒子群算法, 支持向量机, 早熟收敛

Abstract: Aiming at the premature convergence problem of Particle Swarm Optimization(PSO),an improved PSO algorithm is proposed.When the current particles fall into local optimum,according to average distance of particles,this algorithm makes part of particles variate with a certain probability so that it can expand the global search ability.This improved algorithm is used to train Support Vector Machine(SVM),then applied to speaker recognition system.The experiment shows that it can achieve higher convergence speed and higher recognition accuracy.

Key words: speaker recognition, particle swarm optimization, support vector machine, premature convergence