计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (31): 24-26.

• 博士论坛 • 上一篇    下一篇

多流形上的数据分类算法

符茂胜1,罗 斌2,孔 敏1,刘仁金1   

  1. 1.皖西学院 信息工程学院,安徽 六安 237012
    2.安徽大学 计算机科学与技术学院,合肥 230039
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-11-01 发布日期:2011-11-01

Data classification algorithm on multi-manifold

FU Maosheng1,LUO Bin2,KONG Min1,LIU Renjin1   

  1. 1.School of Information Engineering,West Anhui University,Liu’an,Anhui 237012,China
    2.School of Computer Science and Technology,Anhui University,Hefei 230039,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-11-01 Published:2011-11-01

摘要: 与传统的基于流形的数据分类算法大都假设数据位于同一个流形上不同,假设多类数据分别位于不同的流形上。提出了一种基于多流形的数据分类算法,算法大致分为两步:学习过程和测试过程。学习过程采用线性流形学习方法获得训练数据的低维坐标和映射矩阵,测试阶段则利用嵌入空间中对应测试数据点与其k个邻域点的重构误差值来决定其类别。在人工合成数据和coil-20数据库上的实验都表明了该算法的有效性。

关键词: 非线性维数约简, 流形学习, k近邻

Abstract: Unlike most traditional manifold-based data classification algorithms assume that all the data points are on a single manifold,it supposes that multiple classes data may reside on different manifolds.A data classification algorithm on multiple manifolds is presented.The algorithm roughly divides into two steps:learning process and testing process.In learning process,the manifolds are firstly learned for each class separately using linear manifold learning,and then low dimensionality coordinates and mapping matrix of the training data is obtained.In testing process,classification is performed using minimum reconstruction error between test data and its k-nearest neighbors in embedding space.The experimental results on both synthetic data and coil-20 databases show the effectiveness of the proposed algorithm.

Key words: Nonlinear Dimensionality Reduction(NLDR), manifold learning, k nearest neighbors