计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (31): 212-214.

• 工程与应用 • 上一篇    下一篇

求解混合流水车间调度问题的改进型PSO算法

张建军1,王春芳2   

  1. 1.合肥工业大学 计算机与信息学院,合肥 230009
    2.合肥工业大学 机械与汽车工程学院,合肥 230009
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-11-01 发布日期:2011-11-01

Improved PSO algorithm for solving hybrid flow-shop scheduling

ZHANG Jianjun1,WANG Chunfang2   

  1. 1.School of Computer and Information,Hefei University of Technology,Hefei 230009,China
    2.School of Mechanical and Automotive Engineering,Hefei University of Technology,Hefei 230009,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-11-01 Published:2011-11-01

摘要: 针对粒子群优化算法易陷入局部最优以及求解生产调度问题时容易重复搜索的情况,结合混合车间调度问题的优化模型,提出一种改进的粒子群优化算法。在算法设计中,引入基于位置相似度的禁忌策略,避免对刚刚搜索过的区域重复搜索和过早陷入局部最优;同时采用线性微分递减方式更新惯性权重,既保证了算法前期有较高的全局搜索能力,又能保证后期有较高的开发能力。最后通过仿真实验,验证算法的有效性。

关键词: 混合流水车间调度, 粒子群算法, 禁忌策略, 惯性权重

Abstract: The problems will be solved in those situations when the PSO is easily converged in local optimal and repeated search in solving production scheduling problems.Combined with hybrid flow-shop scheduling optimization model,an improved particle swarm optimization algorithm is constructed.In the algorithm,the taboo strategy of the location-based similarity degree is imported to avoid repeatedly searching area which is searched before and premature local optimum search.Meanwhile,another linear differential decrement updating inertia weight strategy is also used to ensure that the algorithm has not only a higher capability in the calculation of the global search,but also to ensure the later development of higher capacity in accelerating convergence rate.Finally,the simulation experiment proves that the algorithm is effective.

Key words: hybrid flow-shop scheduling, particle swarm optimization, taboo strategy, inertia weight