计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (28): 65-68.
胡 婷1,王 勇1,陶晓玲2
HU Ting1,WANG Yong1,TAO Xiaoling2
摘要: 针对传统的流量分类方法准确率低、开销大、应用范围受限等问题,提出一种有效的网络流量分类方法(GA-LM)。该方法将基于神经网络的分类方法作为网络流量的分类模型,采用L-M算法构造分类器,并用遗传算法优化网络初始连接权值,加速了网络收敛过程,提高了分类性能。通过对收集到的实际网络流量数据进行分类,实验结果表明GA-LM比标准BP算法和L-M算法的收敛速度快,具有较好的可行性和高准确性,从而可有效地用于网络流量分类中。