计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (28): 219-222.

• 工程与应用 • 上一篇    下一篇

煤与瓦斯突出的PCA-BP神经网络预测模型研究

许新征1,丁世飞1,杨胜强2,赵作鹏1,吴 祥2   

  1. 1.中国矿业大学 计算机科学与技术学院,江苏 徐州 221116
    2.中国矿业大学 安全工程学院,江苏 徐州 221116
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-10-01 发布日期:2011-10-01

Model for predicting coal and gas outburst based on PCA and BP neural network

XU Xinzheng1,DING Shifei1,YANG Shengqiang2,ZHAO Zuopeng1,WU Xiang2   

  1. 1.School of Computer Science and Technology,China University of Mining and Technology,Xuzhou,Jiangsu 221116,China
    2.School of Safety Engineering,China University of Mining and Technology,Xuzhou,Jiangsu 221116,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-10-01 Published:2011-10-01

摘要: 通过主成分分析法对煤与瓦斯突出的主要影响因素进行主成分提取,选取贡献率大于85%的3个主成分来代替原来的7个影响因素,以此来确定BP神经网络的输入参数为3个。根据煤与瓦斯突出的类型,建立了煤与瓦斯突出预测的PCA-BP神经网络模型。选用典型突出矿井的煤与瓦斯突出实例作为学习样本,对PCA-BP网络进行训练。以云南某煤矿的煤与瓦斯突出实例作为预测样本,仿真结果表明PCA-BP神经网络模型性能优于传统BP神经网络,能够满足煤与瓦斯突出预测的要求。

关键词: 主成分分析, 神经网络, 煤与瓦斯突出, 预测

Abstract: In this paper,three main factors are extracted to replace seven original factors affecting coal and gas outburst by means of principal component analysis when variance contribution is more than 85%,by which,the input parameters of BP neural network are determined.PCA-BP neural network prediction model is established,which is trained by the study samples from typical coal and gas outburst mines.In order to check feasibility and validity of the PCA-BP model,the instances of a coal mine in Yunnan province are used as predictive samples.PCA-BP model and traditional BP neural network are compared by predictive samples.Simulation results show that the PCA-BP neural network model is superior to traditional BP neural network,and meets the requirement for coal and gas outburst prediction.

Key words: principal component analysis, neural network, coal and gas outburst, forecast