计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (28): 188-190.
时海亮,汪远征,徐雅静,辛向军
SHI Hailiang,WANG Yuanzheng,XU Yajing,XIN Xiangjun
摘要: 提出一种新的基于非下采样Contourlet变换(NSCT)和最小二乘支持向量机(LSSVM)的遥感图像土地覆盖分类方法。该方法动态选择最优的多光谱图像的波段特征进行组合,基于NSCT和IHS对多光谱图像和全色图像进行融合,增强多光谱图像的空间分辨率,基于LSSVM对融合图像进行分类。实验结果表明,提出的方法在保留多光谱图像光谱信息的同时,增强了图像的空间细节表现能力,提供更加可靠的地物分类特征,提高了分类精度,并且优于传统的基于最小距离法、最大似然法、贝叶斯分类法和BPNN分类法的遥感图像分类方法,该方法是有效可行的。