计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (27): 41-43.

• 研究、探讨 • 上一篇    下一篇

求解GTSP问题的自适应遗传算法

王跃东1,李 卫2,杨卫波1   

  1. 1.温州大学 瓯江学院,浙江 温州 325027
    2.温州出入境检验检疫局,浙江 温州 325027

  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-09-21 发布日期:2011-09-21

Adaptive genetic algorithm for GTSP

WANG Yuedong1,LI Wei2,YANG Weibo1   

  1. 1.Oujiang College,Wenzhou University,Wenzhou,Zhejiang 325027,China
    2.Wenzhou Entry-exit Inspection and Quarantine Bureau,Wenzhou,Zhejiang 325027,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-09-21 Published:2011-09-21

摘要: 利用传统遗传算法的基本思想,针对GTSP问题,提出了一种改进的自适应遗传算法。通过个体编码方法,将GTSP转化为多段图最短路径问题,采用动态规划算法求解;根据多段图最优子结构性质设计了个体适应度评价函数,加快了算法的运行速度。实验测试的结果表明,新算法比传统的遗传算法具有更快的收敛速度和更优的解质量。

关键词: 自适应遗传算法, 动态规划算法, 广义旅行商问题

Abstract: Based on the basic concepts of traditional genetic algorithm,an improved adaptive genetic algorithm for solving GTSP is proposed.GTSP is changed into multi-segment map problem which is solved with dynamic programming algorithm by individual coding.Individual fitness function based on multi-segment map optimal sub-structure is designed to speed up algorithm calculation speed.Experimental test results show that the new algorithm has faster convergence and better solution than traditional genetic algorithm.

Key words: adaptive genetic algorithm, dynamic programming algorithm, Generalized Traveling Salesman Problem(GTSP)