计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (27): 212-215.
李海燕,张榆锋,徐 丹,施心陵
LI Haiyan,ZHANG Yufeng,XU Dan,SHI Xinling
摘要: 为有效滤除灰度图像中的脉冲噪声并保留图像的细节信息,提出了单一链接脉冲耦合神经网络(Single-Linking Pulse-Coupled Neural Network,SL-PCNN)模型。SL-PCNN简化了传统的PCNN参数,可自适应选取滤波阈值,SL-PCNN对原图像和反转图像进行两次点火过程即可定位出噪声点而无需进行PCNN循环,然后用中值滤波器滤除噪声。实验结果表明,在噪声强度不大于60%时,SL-PCNN的性能优于经典的脉冲噪声滤波算法;在噪声强度较大时SL-PCNN的性能优于常见的PCNN脉冲噪声滤波算法,主观及客观评价证明该算法的有效性。