计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (27): 144-146.

• 数据库、信号与信息处理 • 上一篇    下一篇

融合K-调和均值的混沌粒子群聚类算法

沈明明1,2,毛 力1,2   

  1. 1.中国水产科学研究院 淡水渔业研究中心 农业部淡水鱼类遗传育种和养殖生物学重点开放实验室,江苏 无锡 214081
    2.江南大学 信息工程学院,江苏 无锡 214122
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-09-21 发布日期:2011-09-21

Chaos particle swarm optimization clustering algorithm merged with K-harmonic means

SHEN Mingming1,2,MAO Li1,2   

  1. 1.Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes,Ministry of Agriculture,Freshwater Fisheries Research Center,Chinese Academy of Fishery Science,Wuxi,Jiangsu 214081,China
    2.School of Information Technology,Jiangnan University,Wuxi,Jiangsu 214122,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-09-21 Published:2011-09-21

摘要: 针对K-调和均值和混沌粒子群聚类算法的优缺点,提出了一种融合K-调和均值的混沌粒子群聚类算法。首先通过K-调和均值方法把粒子群分成若干个子群体,每个粒子根据其个体极值和所在子种群的全局极值来更新位置。其次,算法中引入变尺度混沌变异,抑制了早熟收敛,提高了计算精度。实验证明,该算法可以有效地避免算法陷入局部最优,在保证收敛速度的同时增强了算法的全局搜索能力,明显改善了聚类效果。 

关键词: K-调和均值, 混沌粒子群, 聚类

Abstract: In view of the advantages and disadvantages of K-harmonic means and chaos particle swarm optimization clustering algorithm,a chaos particle swarm optimization clustering algorithm merged with K-harmonic means is provided.Particle swarm is firstly divided into sub-groups,resulting in an iterative process for each particle based on its extreme value and location of the individual sub-populations in the global extremum to update their position.Secondly,the introduction of variable-scale chaotic mutation,inhibit the premature convergence and improve the calculation accuracy.The new algorithm can avoid the algorithm into a local optimum,guarantee the convergence speed while enhancing the capacity of global search algorithms,improve the clustering efficiency.

Key words: K-harmonic means, chaotic particle swarm optimization, cluster