计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (27): 132-135.
严文娟 1,2,李 刚2,林 凌2,张宝菊3,佟 颖3
YAN Wenjuan1,2,LI Gang2,LIN Ling2,ZHANG Baoju3,TONG Ying3
摘要: 为了能客观地反映中医舌诊所蕴涵的病理信息,首次采用近红外光谱和神经网络对疾病进行诊断。分别采用了BP网络、广义回归神经网络(GRNN)、主成分分析和广义回归神经网络(PCA-GRNN)结合的三种模型在舌诊光谱法中的分析预测,首先对三种建模方法进行了分析,再用采集的健康人和糖尿病患者舌诊光谱数据进行校正模型的建立,两类舌诊光谱样本各39例,共计78例样本,在神经网络学习中,将其分成训练集样本60例和预测集样本18例,分别利用所建的三种模型对舌诊光谱样本进行训练和预测。实验结果是三种模型中PCA-GRNN相结合的方法平均绝对误差最小为13.2%、训练时间最短为0.072 255 s,以相对偏差在0.5以内为正确的情况下,其正确率为100%。说明用PCA-GRNN模型可以应用于舌诊光谱法的分析,并取得较好的分析结果,这对中医舌诊的客观化起到了一定的推动作用。