计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (26): 242-245.

• 工程与应用 • 上一篇    下一篇

煤自然发火期的主成分神经网络预测模型

王 华   

  1. 曲阜师范大学 计算机科学学院,山东 日照 276826
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-09-11 发布日期:2011-09-11

Principal component neural network prediction model for coal self-ignition duration

WANG Hua   

  1. School of Computer Science,Qufu Normal University,Rizhao,Shandong 276826,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-09-11 Published:2011-09-11

摘要: 煤自然发火期是衡量煤自燃特性的一个重要参数,也是指导井下防灭火工作的重要参考依据。结合主成分分析与神经网络的优点,提出了基于主成分分析的神经网络煤自然发火期预测模型。采用主成分分析法对原始输入变量进行预处理,选择输入变量的主成分作为神经网络输入,一方面减少了输入变量的维数,消除了各输入变量的相关性;另一方面提高了网络的收敛性和稳定性,同时也简化了网络的结构。通过实例验证,基于主成分的神经网络比一般神经网络训练精度更高,学习时间更短,预测效果更优。

关键词: 自然发火期, 主成分分析, 神经网络, 预测

Abstract: The coal self-ignition duration is an important parameter not only to measure the characteristic of coal self-ignition but also to direct the fire control technique in coal mines.The BP neural network prediction model for the self-ignition duration is established based on the Principal Component Analysis(PCA).Inducting PCA to pre-analyze the original multi-objective variables,and using the principal components of original variables as the input of network can cut down the dimensions of input,and at the same time eliminates the relativity between variables,so improves the convergence speed and stability of network and simplifies network structure.Testing actual instances to validate that the PCA-BP neural network compared with the normal neural network improves the precision,reduces training time and possesses better performance.

Key words: self-ignition duration, Principal Component Analysis(PCA), neural network, prediction