计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (26): 186-188.

• 图形、图像、模式识别 • 上一篇    下一篇

一种基于图的特征选择方法

张 齐1,林媛媛1,余国先2   

  1. 1.华南理工大学 计算机系统结构研究所,广州 510006
    2.华南理工大学 计算机科学与工程学院,广州 510006
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-09-11 发布日期:2011-09-11

New filter method for feature selection based on graph

ZHANG Qi1,LIN Yuanyuan1,YU Guoxian2   

  1. 1.Institute of Computer Architecture,South China University of Technology,Guangzhou 510006,China
    2.College of Computer Science and Engineering,South China University of Technology,Guangzhou 510006,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-09-11 Published:2011-09-11

摘要: 在很多的机器学习和数据挖掘任务中,特征子集选择是重要的数据预处理步骤之一。提出一种基于图方法的无监督式特征选择方法(GBFS),构造一个以样本数据为顶点,数据间相似性作为边的图,再根据各特征的得分优先选择那些具有局部信息保持和全局区分能力的特征。实验结果表明,基于该方法选择的特征子集,在大多数情况下都能取得较好的分类效果。

关键词: 特征选择, 基于图的方法, 局部和全局信息

Abstract: In many machine learning and data mining tasks,feature subset selection is an important step in data preprocessing.This paper presents a Graph Based Feature Selection(GBFS) algorithm,which is based on the graph,and prefers the features with local information preserving and global discriminative power.The experimental results validate its effectiveness in feature subset selection.

Key words: feature selection, graph based, local and global information