计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (25): 82-84.

• 网络、通信、安全 • 上一篇    下一篇

一个双线性对上公开可验证多秘密共享方案

张建中,张艳丽   

  1. 陕西师范大学 数学与信息科学学院,西安 710062
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-09-01 发布日期:2011-09-01

Publicly verifiable multi-secret sharing scheme on bilinear pairing

ZHANG Jianzhong,ZHANG Yanli   

  1. College of Mathematics and Information Science,Shaanxi Normal University,Xi’an 710062,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-09-01 Published:2011-09-01

摘要: 基于椭圆曲线上的双线性对提出了一个公开可验证的多秘密共享方案。仅利用双线性对的双线性性而不需要执行交互式或非交互式协议,任何一方都可以验证分发者所分发共享的有效性。该方案还是一个多秘密共享方案,在一次秘密共享过程中可以共享多个秘密。方案的安全性等价于Diffie-Hellman假设及椭圆曲线上的离散对数问题困难性。

关键词: 公开可验证多秘密共享, 双线性对, Diffie-Hellman问题, 椭圆曲线离散对数

Abstract: This paper presents a publicly verifiable multi-secret sharing scheme based on bilinear pairing on elliptic curves.The validity of shares distributed by the dealer can be verified by any party only using bilinearity of bilinear pairing without implementing interactive or non-interactive protocol.What’s more,the scheme is a multi-secret sharing scheme,which can share several secrets in one secret sharing process.The security of the scheme is equivalent to Diffie-Hellman assumption and the intractability of the elliptic curve discrete logarithm problem.

Key words: publicly verifiable multi-secret sharing, bilinear pairing, Diffie-Hellman problem, elliptic curve discrete logarithm problem