计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (25): 156-159.

• 数据库、信号与信息处理 • 上一篇    下一篇

网络评价倾向性研究

程传鹏   

  1. 中原工学院 计算机学院,郑州 450007
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-09-01 发布日期:2011-09-01

Research on tendentiousness recognition of user evaluation

CHENG Chuanpeng   

  1. School of Computer Science,Zhongyuan Institute of Technology,Zhengzhou 450007,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-09-01 Published:2011-09-01

摘要: 提出了基于语义相似度判别用户评价倾向的方法。利用同义词词林计算词语的相似度,由词语的相似度构造二部图,通过求二部图的最大匹配获得文本之间的相似度。依据KNN分类来判断文本的倾向性。实验结果表明该方法优于传统的倾向性判断的方法。

关键词: 同义词词林, K-最近邻(KNN)分类, 文本相似度, 二部图, 最大匹配

Abstract: This paper improves a method to distinguish tendentiousness of user evaluation.Semantic similarity of words is computed based on “TongYiCi CiLin”.Bipartite graph is constructed according to calculating similarity of words.The biggest matching algorithm is used to compute similarity between texts.Experiments show that precision and recall rate are greatly improved.

Key words: TongYiCi CiLin, K-Nearest Neighbor(KNN), text similarity, bipartite graph, maximum matching