计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (23): 242-244.

• 工程与应用 • 上一篇    下一篇

基于支持向量机和Q学习的移动机器人导航

侯艳丽   

  1. 商丘师范学院 计算机科学系,河南 商丘 476000
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-08-11 发布日期:2011-08-11

Mobile robot navigation based on support vector machine and Q-learning

HOU Yanli   

  1. Department of Computer,Shangqiu Teachers College,Shangqiu,Henan 476000,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-08-11 Published:2011-08-11

摘要: 基于神经网络的连续状态空间Q学习已应用在机器人导航领域。针对神经网络易陷入局部极小,提出了将支持向量机与Q学习相结合的移动机器人导航方法。首先以研制的CASIA-I移动机器人和它的工作环境为实验平台,确定出Q学习的回报函数;然后利用支持向量机对Q学习的状态——动作对的Q值进行在线估计,同时,为了提高估计速度,引入滚动时间窗机制;最后对所提方法进行了实验,实验结果表明所提方法能够使机器人无碰撞的到达目的地。

关键词: 移动机器人, Q学习, 支持向量机, 导航, 在线学习

Abstract: Continuous Q-learning algorithm based on neural has been used in robotic navigation domain for its simplicity and well-developed theory.Aiming at the neural easily falling into local minimum,a new mobile robot navigation method using Q-learning based on a Support Vector Machine(SVM) is proposed.According to the developed mobile robot CASIA-I and its working environment,an approach is proposed,used to determine the reward/penalty function of Q-learning.A SVM is used to estimate the Q-value of state-action pair on-line,at the same time,in order to decrease the on-time learning time of SVM,a sliding time-window is introduced.Experimental results are included to show that the action policy obtained through Q-learning based on SVM can make the mobile robot reach the destination without obstacle collision.

Key words: mobile robot, Q-learning, support vector machine, navigation, on-line learning