计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (22): 175-179.

• 图形、图像、模式识别 • 上一篇    下一篇

一种新的背景减运动目标检测方法

刘文萍,贺 娜   

  1. 北京林业大学 信息学院,北京 100083
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-08-01 发布日期:2011-08-01

Moving object detection method based on background subtraction

LIU Wenping,HE Na   

  1. School of Information Science and Technology,Beijing Forestry University,Beijing 100083,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-08-01 Published:2011-08-01

摘要: 结合图像亮度归一化和二维交叉熵的思想提出了一种针对光照变化鲁棒性强的运动目标检测算法。该算法对每幅视频帧图像进行亮度归一化处理,采用一种改进的均值滤波法初始化背景并自动进行背景更新,这种改进的方法在初始化期间有目标出现时仍能得到满意的背景图像,利用二维交叉熵的思想自动选取阈值对背景减得到的差分图像进行分割以检测出视频序列中的运动目标区域。实验结果表明:该运动目标检测算法实时有效,且对光照变化具有很强的鲁棒性。

关键词: 数字视频分析, 运动目标检测, 背景建模, 亮度归一化, 二维交叉熵

Abstract: Combining the thoughts of image intensity normalization and two-dimensional cross-entropy,a moving object detection algorithm,which is robust against illumination changes,is presented.The intensity of each video frame image is normalized.The background is initialized by an improved mean filtering method,which can get a satisfying background image even if an object appears.The background is updated automatically.The moving objects are detected by using an adaptive threshold based on two-dimensional cross-entropy to segment the background subtraction image.Experimental results demonstrate that this algorithm is quick,effective and robust against changes of illumination.

Key words: digital video analysis, moving object detection, background modeling, intensity normalization, 2D cross entropy