计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (21): 58-60.

• 研究、探讨 • 上一篇    下一篇

一种混沌惯性权重的简化粒子群算法

刘瑞芳,王希云   

  1. 太原科技大学 应用科学学院 数学系,太原 030024

  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-07-21 发布日期:2011-07-21

implified particle swarm optimization algorithm using chaotic inertia weight

LIU Ruifang,WANG Xiyun   

  1. Department of Mathematics,Taiyuan University of Science and Technology,Taiyuan 030024,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-07-21 Published:2011-07-21

摘要:

惯性权值作为粒子群算法的一个全局参数,能够方便地控制算法的搜索能力和收敛速度,在算法运行过程中具有重要的作用。在分析惯性权值的作用基础上提出了一种混沌惯性权重的简化粒子群优化算法,利用混沌序列的内在随机性、遍历性和规则性,提高算法的寻优能力。测试结果表明,新算法具有更快的收敛速度和更强的全局寻优能力。

关键词: 混沌, 惯性权值, 简化粒子群算法

Abstract: As a global parameter of PSO,inertia weight can easily control algorithm of search ability and convergence speed,and plays an important role of operation process in algorithm.A simplified particle swarm optimization using chaotic inertia weight is proposed based on the analysis of the effect of inertial weight setting.The new algorithm improves the searching capability by chaos sequences of intrinsic stochastic effect,ergodicity and regularity.Test results show that the new algorithm has faster convergence speed and better global optimization ability in the multi-dimensional space.

Key words: chaos, inertia weight, simplified Particle Swarm Optimization(PSO)