计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (21): 185-187.

• 图形、图像、模式识别 • 上一篇    下一篇

改进的谱聚类图像分割方法

尹 芳1,陈德运1,吴 锐2   

  1. 1.哈尔滨理工大学 计算机科学与技术学院,哈尔滨 150001
    2.哈尔滨工业大学 计算机科学与技术学院,哈尔滨 150001
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-07-21 发布日期:2011-07-21

Improved method of image segmentation using spectral clustering

YIN Fang1,CHEN Deyun1,WU Rui2   

  1. 1.School of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150001,China
    2.School of Computer Science and Technology,Harbin Institute of Technology,Harbin 150001,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-07-21 Published:2011-07-21

摘要: 图像分割作为图像识别的一个重要处理步骤,但存在效果不理想或者计算复杂度过高的问题。提出一种新的灰度图像二值化的方法。该方法将Ncut作为谱聚类的量度,在计算该值时使用基于图像灰度级的权重矩阵,而非普通基于图像像素的权重矩阵。这样,计算复杂度和空间复杂度都明显降低。通过对实际场景中文本图像的实验,数据表明此方法在时间和系统开销方面比传统基于阈值的分割方法具有更优的性能。

关键词: 二值化, 图像分割, 空间聚类

Abstract: Image segmentation is an important processing step,but problems always exist such that the result is not satisfied and the computational complexity is too high.A novel method of binarization for gray images is presented.The Ncut(Normalized graph cut) is used as the measure for spectral clustering in the algorithm,and the weight matrixes used in evaluating the graph cuts are based on the gray-scale image,rather than the matrix commonly used based on image pixels.Thus,the proposed algorithm requires much smaller spatial costs and much lower computation complexity.Experiments on text images in natural scene show the superior performance of the proposed method on time and system resources cost compared to the typical threshold algorithms.

Key words: binarization, graph cut, spectral clustering