计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (21): 153-156.
• 图形、图像、模式识别 • 上一篇 下一篇
赵宝江
收稿日期:
修回日期:
出版日期:
发布日期:
ZHAO Baojiang
Received:
Revised:
Online:
Published:
摘要: 基于T-S模型,提出一种非线性系统的模型辨识方法。利用蚁群聚类算法来进行结构辨识,确定系统的模糊空间和模糊规则数。在聚类的基础上,利用遗传算法辨识模糊模型的后件加权参数,得到一个精确的模糊模型,从而实现参数辨识。仿真结果验证了该方法的有效性,表明该方法能够实现非线性系统的辨识,辨识精度高,可当作复杂系统建模的一种有效手段。
关键词: 蚁群聚类算法, T-S模糊模型, 系统辨识
Abstract: A model identification approach of nonlinear systems is presented based on T-S model.To automatically acquire the fuzzy space structure of system and the number of fuzzy rules,the ant colony clustering algorithm is used in structure identification.Based on the cluster result,the parameters of conclusion of fuzzy model are identified by means of the genetic algorithm to obtain a precise fuzzy model and realize parameters identification.This proposed method realizes the identification of nonlinear system and improves greatly the precision of identification.The simulation results show the effectiveness of the proposed method.
Key words: ant colony clustering algorithm, T-S fuzzy model, system identification
赵宝江. 蚁群聚类算法的T-S模糊模型辨识[J]. 计算机工程与应用, 2011, 47(21): 153-156.
ZHAO Baojiang. Identification of T-S fuzzy models based on ant colony clustering algorithm[J]. Computer Engineering and Applications, 2011, 47(21): 153-156.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2011/V47/I21/153