计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (21): 126-129.
王振朝,赵宇茜,赵 晨
WANG Zhenchao,ZHAO Yuqian,ZHAO Chen
摘要: 提出一种基于相空间重构原理进行样本选取的改进分形预测算法。该算法将时间序列在相空间重构中得到的嵌入维数和时间延迟作为分形预测中数据样本的选择依据,结合分形理论的拼贴定理和插值迭代算法,实现时间序列的分形预测,建立时间序列的分形预测模型。利用此改进算法对低压电力线噪声序列进行预测的结果表明,与现有分形算法相比,改进算法提高了数据样本间的相似度,优化了数据样本的选取,明显提高了预测的精度,适合于对自相似性和周期性不明确的时间序列的预测。