计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (18): 234-236.

• 工程与应用 • 上一篇    下一篇

Toy模型蛋白质折叠问题的随机扰动粒子群解法

周洪斌1,2,吕 强2,温 炜2   

  1. 1.沙洲职业工学院 电子信息工程系,江苏 张家港 215600
    2.苏州大学 计算机科学与技术学院,江苏 苏州 215006
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-06-21 发布日期:2011-06-21

Stochastic perturbation PSO algorithm for Toy model-based protein folding problem

ZHOU Hongbin1,2,LV Qiang2,WEN Wei2   

  1. 1.Electronic Information Engineering Department,Shazhou Professional Institute of Technology,Zhangjiagang,Jiangsu 215600,China
    2.School of Computer Science and Technology,Soochow University,Suzhou,Jiangsu 215006,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-06-21 Published:2011-06-21

摘要: Toy模型蛋白质折叠问题是一个计算生物学中典型的NP难题。提出了一种随机扰动粒子群结合爬山优化的算法,应用二维Toy模型进行蛋白质折叠结构预测,在Fibonacci测试序列及真实蛋白质序列上的测试结果验证了算法的良好性能。

关键词: 粒子群优化算法, 爬山算法, Toy模型蛋白质折叠

Abstract: Protein folding prediction problem based on Toy model is a classical NP hard problem in computational biology.The paper puts forward a stochastic perturbation PSO algorithm,combining with the ideas from hill-climbing.This algorithm achieves good results when it is applied to predict the best 2D structure of some benchmark Fibonacci sequences and real protein sequences.

Key words: Particle Swarm Optimization(PSO), hill-climbing algorithm, Toy model-based protein folding