计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (16): 40-42.

• 研究、探讨 • 上一篇    下一篇

求解最大子团的随机抽样免疫遗传算法

周本达1,陈明华2   

  1. 1.皖西学院 数理系,安徽 六安 237012
    2.皖西学院 计算机科学与技术系,安徽 六安 237012
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-06-01 发布日期:2011-06-01

Immune genetic algorithm based on random sampling for maximum clique problem

ZHOU Benda1,CHEN Minghua2   

  1. 1.Department of Mathematics & Physics,West Anhui University,Lu’an,Anhui 237012,China
    2.Department of Computer Science & Technology,West Anhui University,Lu’an,Anhui 237012,China

  • Received:1900-01-01 Revised:1900-01-01 Online:2011-06-01 Published:2011-06-01

摘要: 针对遗传算法在最大子团求解中保持群体多样性能力不足、早熟、耗时长、成功率低等缺陷,利用随机抽样方法对交叉操作进行重新设计,结合免疫机理定义染色体浓度,设计克隆选择策略,提出了求解最大子团问题的随机抽样免疫遗传算法。用仿真算例说明了新算法在解的质量、收敛速度等各项指标上均有提高,且不比DLS-MC、QUALEX等经典搜索算法差,对某些算例还得到了更好解。

关键词: 最大团问题, 遗传算法, 随机抽样, 人工免疫系统, 随机抽样免疫遗传算法

Abstract: Aiming at the defects of genetic algorithm for the maximum clique problem in the deficiency of keeping population diversity,prematurity,time consuming,low success rate and so on,the crossover operation in GA is redesigned by random sampling.Combined with immune mechanism,chromosome concentration is defined and clonal selection strategy is designed,thus a Immune Genetic Algorithm is given based on random sampling for solving the maximum clique problem.The emulational examples show that solution quality,convergence rate and other various indices are improved by the new algorithm.On the other hand,the new algorithm is not inferior to such classical search algorithms as DLS-MC and QUALEX,and it gets better solutions to some examples.

Key words: Maximum Clique Problem(MCP), Genetic Algorithm(GA), Random Sampling(RS), Artificial Immune Systems(AIS), Immune Genetic Algorithm based on Random Sampling(RIGA)