计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (16): 207-210.

• 图形、图像、模式识别 • 上一篇    下一篇

加权熵互信息在医学图像配准中的应用

朱圣权,赵海峰,罗 斌   

  1. 安徽大学 计算机科学与技术学院,合肥 230039
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-06-01 发布日期:2011-06-01

Application of mutual information based on weighted entropy in medical image registration

ZHU Shengquan,ZHAO Haifeng,LUO Bin   

  1. Department of Computer Science and Technology,Anhui University,Hefei 230039,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-06-01 Published:2011-06-01

摘要: 基于互信息的医学图像配准方法具有自动化程度高、配准精度高等优点。采用部分体积插值法和香农熵计算得到的互信息,无法避免会出现一些局部极值,可能导致错误的配准。提出了一种用加权熵代替香农熵的互信息计算方法,并将其应用于图像配准实验。实验结果表明,该方法能够有效平滑互信息的局部极值,减少错误的医学图像配准。

关键词: 互信息, 医学图像配准, 部分体积插值法, 加权熵

Abstract: The medical image registration by mutual information has been accepted as one of the most accurate and highly-
automated methods.For the mutual information calculated by partial volume interpolation method and Shannon entropy,certain local extremums are inevitable,which may lead to inaccurate registration.Weighted entropy instead of Shannon entropy to compute the mutual information is proposed in this paper,and it has been used in medical image registration experiment.The experimental results show that the method can smooth the local extremums of mutual information and reduce the possibility of wrong medical image registration.

Key words: mutual information, medical image registration, partial volume interpolation, weighted entropy