计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (15): 39-42.

• 研究、探讨 • 上一篇    下一篇

克隆选择算法在优化模糊Petri网参数中的应用

李 洋1,乐晓波2   

  1. 1.湖南对外经济贸易职业学院 服务外包学院,长沙 410015
    2.长沙理工大学 计算机与通信工程学院,长沙 410076
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-05-21 发布日期:2011-05-21

Research on clonal selection algorithm applied in parameters optimization of fuzzy Petri nets

LI Yang1,YUE Xiaobo2   

  1. 1.Institute of Service Outsourcing,Hunan Foreign Economic Rela.& Trade College,Changsha 410015,China
    2.Institute of Compu. & Commu. Engineering,Changsha Univ. of Sci. & Tech.,Changsha 410076,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-05-21 Published:2011-05-21

摘要: 如何确定模糊产生式规则的各项参数对模糊Petri网的建立具有重要意义,但一直是尚未解决的难题。首次把克隆选择算法引入到模糊Petri网的参数寻优过程,提出一种基于线程实现技术的参数优化算法,该算法实现不依赖于经验数据,对初始输入无严格要求。仿真实例表明,经克隆选择线程优化算法训练出的参数正确率较高,且所得的模糊Petri网具有较强的泛化能力和自适应功能。

关键词: 模糊Petri网, 模糊推理, 克隆选择算法, 线程技术

Abstract: It is significant and being unsolved yet for building a Fuzzy Petri Net(FPN) to determine all parameters of fuzzy production rules.In this paper,Clonal Selection Algorithm(CSA) is originally introduced into the procedure of exploring parameters of FPN.An optimization algoritnm based on the techniques of multithreading is proposed.Realization of the algorithm hasn’t depended on experiential data and requirements for primary input are not critical.Simulation experiment shows that the trained parameters gained from above CSA are highly accurate and the resultant FPN model possesses strong generalizing capability and self-adjusting purpose.

Key words: Fuzzy Petri Net(FPN), fuzzy reasoning, Clonal Selection Algorithm(CSA), multithreading