计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (15): 225-228.

• 工程与应用 • 上一篇    下一篇

神经网络集成的城市道路状态判别模型研究

李春英1,汤志康2,曹元大3   

  1. 1.肇庆学院 计算机学院,广东 肇庆 526061
    2.广东技术师范学院 计算机学院,广州 510665
    3.北京理工大学 计算机学院,北京 100081
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-05-21 发布日期:2011-05-21

Research on neural network ensemble for urban traffic state distinguish model

LI Chunying1,TANG Zhikang2,CAO Yuanda3   

  1. 1.School of Computer,Zhaoqing University,Zhaoqing,Guangdong 526061,China
    2.School of Computer Science,Guangdong Polytechnic Normal University,Guangzhou 510665,China
    3.School of Computer Science,Beijing Institute of Technology,Beijing 100081,China

  • Received:1900-01-01 Revised:1900-01-01 Online:2011-05-21 Published:2011-05-21

摘要: 针对城市道路交通状态影响因素多、判别难的特点,在分析K-均值聚类算法和概率神经网络(PNN)的基础上,利用多源检测信息的互补性,提出一种基于快速全局聚类分析的概率神经网络集成模型,通过聚类提高集成网络间的差异度,同时利用主成分分析(PCA)优化概率神经网络结构,仿真实验表明该模型与传统的集成方法Bagging相比,能够利用更简单的网络结构,快速有效地识别出城市道路交通状态,为交通预警和诱导策略的制定提供数据依据。

关键词: 全局K-均值聚类, 概率神经网络, 主成分分析, 神经网络集成

Abstract: Aiming at the features of urban traffic state having many influencing factors and difficulty to distinguish,by analyzing K-means clustering algorithm and Probability Neural Network(PNN),and using complementary of multiple sources detection information,this paper proposes probability neural network ensemble model based on rapid global clustering technique to improve diversity of the neural networks ensemble.While using Principal Component Analysis(PCA) to optimize the PNN structure.The simulation results show that the method can use more simple network structure,quickly and efficiently distinguish the urban traffic state than traditional integration methods Bagging,be able to provide data reference for future urban traffic warning and induction.

Key words: global K-mean clustering, Probability Neural Network(PNN), Principal Component Analysis(PCA), neural network ensemble