计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (14): 56-58.

• 研究、探讨 • 上一篇    下一篇

改进型粒子群算法及其在选址问题中的应用

刘 峰,王建芳,李金莱   

  1. 南阳师范学院 计算机与信息技术学院,河南 南阳 473061
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-05-11 发布日期:2011-05-11

Novel particle swarm optimization algorithm and its application in solving min-max location problem

LIU Feng,WANG Jianfang,LI Jinlai   

  1. College of Computer & Information Technology,Nanyang Normal University,Nanyang,Henan 473061,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-05-11 Published:2011-05-11

摘要: 为了解决基本粒子群算法不易跳出局部最优的问题,提出了一种协同粒子群优化算法。在算法中通过加入权值递减的惯性因子和变异算子以克服基本PSO易早熟、不易收敛以及缺乏多样性的不足。将算法应用于极小极大选址问题的实验结果表明,算法能够有效地求解极小极大选址问题,具有较好的应用价值。

关键词: 粒子群优化算法, 协同粒子群, 选址问题

Abstract: To solve the problem that particle swarm optimization algorithm is apt to trap in local optimum,a novel cooperative particle swarm optimization algorithm is proposed.In order to overcome the drawback of basic PSO,such as being subject to falling into local optimization,being poor in performance of precision and lack of diversity,an improved PSO,including the strategy for decreasing inertia weight and mutation operator,is proposed.The test experiments for solving min-max location problem show that the proposed solution can effectively reduce the cost of location problem,and has good application value.

Key words: particle swarm optimization algorithm, cooperative particle swarm, location problem