计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (14): 131-133.

• 数据库、信号与信息处理 • 上一篇    下一篇

基于分形维的语音去噪与音节分割

潘 峰1,2,丁娜娜1,吕 鹏3,申军伟4   

  1. 1.武警工程学院 电子技术系网络与信息安全武警部队重点实验室,西安 710086
    2.西安电子科技大学 网络信息安全教育部重点实验室,西安 710071
    3.石家庄科技大学 信息工程学院,石家庄 050021
    4.武警工程学院 电子技术系机要指挥教研室,西安 710086
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-05-11 发布日期:2011-05-11

Speech denoising and syllable segmentation based on fractal dimension

PAN Feng1,2,DING Nana1,LV Peng3,SHEN Junwei4   

  1. 1.Key Lab of Network & Information Security,Chinese Armed Police Force,Engineering Institute of the Armed Police,Xi’an 710086,China
    2.Key Laboratory of Network & Information Security of the Ministry of Education,Xidian University,Xi’an 710071,China
    3.College of Information Engineering,Shijiazhuang University of Science and Technology,Shijiazhuang 050021,China
    4.Electronic Department,Engineering Institute of the Armed Police,Xi’an 710086,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-05-11 Published:2011-05-11

摘要: 为提高现有小波去噪法的处理效果,准确有效判断出连续语音中各个音节的起止点,提出了基于分形理论的算法。该算法首先利用分形维与小波变换相结合的动态阈值算法进行语音去噪,从而提取出尽可能纯净的语音信号;在此基础上,计算分形维轨线,根据其均值对音节分割点进行判定。实验结果表明,该算法较好地实现了语音去噪和音节分割,鲁棒性较好,使得系统在低信噪比情况下仍保持较高准确率,在语音识别方面有较好应用前景。

关键词: 语音识别, 分形维, 语音去噪, 音节分割

Abstract: In order to enhance the effect of existing wavelet denoising and determine beginning-ending points of each syllable in continuous speech,the thesis proposes an algorithm based on fractal theory.The algorithm first uses dynamic threshold algorithm which combines fractal dimension with wavelet transform to denoise the speech signal,it can extract pure speech as far as possible;on this basis,the paper designs the algorithm which is based on the mean of fractal dimension trajectory to carry out syllable segmentation.The experimental results show that the algorithms not only achieves speech denoising and syllable segmentation but also has good robustness.In the case of low SNR,the algorithm is still able to maintain high accuracy rate.It has better prospect in speech recognition field.

Key words: speech recognition, fractal dimension, speech denoising, syllable segmentation