计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (14): 13-16.

• 博士论坛 • 上一篇    下一篇

复杂背景下的人体热图像分割

谭建辉1,2,潘保昌3   

  1. 1.广东工业大学 自动化学院,广州 510006
    2.阳江职业技术学院 计算机科学系,广东 阳江 529566
    3.广东工业大学 信息工程学院,广州 510006
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-05-11 发布日期:2011-05-11

Algorithm of human thermal image segmentation under complicated background

TAN Jianhui1,2,PAN Baochang3   

  1. 1.Faculty of Automation,Guangdong University of Technology,Guangzhou 510006,China
    2.Department of Computer Science,Yangjiang Vocational and Technical College,Yangjiang,Guangdong 529566,China
    3.Faculty of Information Engineering,Guangdong University of Technology,Guangzhou 510006,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-05-11 Published:2011-05-11

摘要: 复杂背景下,特别是在环境与人体温度相差不大的情况下,红外运动人体目标与背景的灰度值会非常相似,准确的红外人体分割是一个难题。对基于混合高斯模型的背景减除法进行改进,在二值化阶段采用改进型的脉冲耦合神经网络(PCNN)进行精细分割,利用多模态免疫进化算法(MIEA)自动确定PCNN分割参数。仿真实验结果表明,该算法图像分割精度高,实现了快速自动分割,取得了较为理想的图像分割效果。

关键词: 混合高斯模型, 脉冲耦合神经网络, 多模态免疫进化算法, 图像分割

Abstract: The accurate segmentation of infrared body is a difficult problem under complicated background,especially in the environment that the gray values are very similar between the infrared human movement target and background when their temperatures vary slightly.Therefore,the background subtraction method based on Gaussian mixture model is improved.The fine segmentation is implemented by the modified Pulse Coupled Neural Network(PCNN) in its binary stage,and meanwhile the PCNN segmentation parameters are determined by using the multi-modal immune evolution algorithm(MIEA).The simulation results show that this algorithm is achieved fast automatic segmentation,and has gotten the ideal effect of image segmentation that its precision is high.

Key words: Gaussian Mixture Model(GMM), Pulse Coupled Neural Network(PCNN), Multi-modal Immune Evolution Algorithm(MIEA), image segmentation