计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (13): 161-165.
黄红星,王秀丽,黄习培
HUANG Hongxing,WANG Xiuli,HUANG Xipei
摘要: 最大频繁项集挖掘用于发现频繁地出现在数据集中的最大子集,目前已经有许多有效的算法。应用蚁群算法挖掘最大频繁项集是一种新的方法,但是该算法往往迭代次数多,提取率低。结合频繁项集关联图和最大最小蚂蚁系统,提出一种新的蚁群算法。算法构造蚁群路径图,蚁群在动态的信息素和启发式因子指导下构造局部最大频繁项集,通过新的局部更新和全局更新机制发现全局最大频繁项集。对比实验表明,算法挖掘速度快,提取率高。