计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (13): 154-156.
• 数据库、信号与信息处理 • 上一篇 下一篇
李克潮,梁正友
收稿日期:
修回日期:
出版日期:
发布日期:
LI Kechao,LIANG Zhengyou
Received:
Revised:
Online:
Published:
摘要: 协同过滤是目前推荐系统中最为成功的推荐技术,但传统的协同过滤算法没有考虑用户兴趣的变化。针对上述问题,从艾宾浩斯记忆遗忘规律得到启发,提出一种基于资源相似度的协同过滤算法,利用基于指数遗忘的数据权重来逐步减小资源相似度的权重。实验结果表明,该算法显著提高推荐系统的推荐质量。
关键词: 协同过滤, 推荐算法, 用户兴趣, 指数遗忘
Abstract: Collaborative Filtering(CF) is the most successful technologies to date,but traditional collaborative filtering algorithm does not consider the change of users’ interests.To solve the problem,this paper presents a CF recommendation algorithm,named item similarity-based CF algorithm,which uses exponential gradual forgetting-based data weight to diminish the importance of each item similarity.The experimental results show that the proposed algorithm can efficiently improve recommendation quality.
Key words: collaborative filtering, recommendation algorithm, users’ interests, exponential forgetting
李克潮,梁正友. 适应用户兴趣变化的指数遗忘协同过滤算法[J]. 计算机工程与应用, 2011, 47(13): 154-156.
LI Kechao,LIANG Zhengyou. Exponential forgetting collaborative filtering recommendation algorithm incorporated with user interest change[J]. Computer Engineering and Applications, 2011, 47(13): 154-156.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2011/V47/I13/154