计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (12): 200-202.
覃 华,徐燕子
QIN Hua,XU Yanzi
摘要: 支持向量机在大规模训练集上学习时,存在学习时间长、泛化能力下降的问题。研究使用路径跟踪内点法构建面向大规模训练集的SVM学习算法,找到影响算法学习效率的关键是求解大型线性修正方程,首先使用降维法降低修正方程的维数,再使用矩阵LDLT并行分解高效地求解子修正方程,达到优化大规模SVM学习效率的目的,实验结果说明SVM训练效率提升的同时不影响SVM模型的泛化能力。