计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (11): 132-134.

• 数据库、信号与信息处理 • 上一篇    下一篇

峭度自然梯度盲分离改进算法

王灵伟,舒 勤,陈飞龙   

  1. 四川大学 电气信息学院,成都 610065
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-04-11 发布日期:2011-04-11

Improved algorithm of natural gradient blind source separation with kurtosis

WANG Lingwei,SHU Qin,CHEN Feilong   

  1. School of Electrical Engineering and Information,Sichuan University,Chengdu 610065,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-04-11 Published:2011-04-11

摘要: 自然梯度算法有较快的收敛速度、良好的分离性能,在盲信号分离中占有重要地位。但该算法是基于固定步长的,所以不能很好地解决收敛速度与稳态误差之间的矛盾。通过建立步长因子与峭度的平方和之间的非线性关系,提出了一种自适应的自然梯度算法。计算机仿真结果证实了该算法的有效性,并说明了该算法明显优于自然梯度算法。

关键词: 盲信号分离, 自适应, 学习率, 峭度

Abstract: Because of quick convergence rate and good separation performance,natural gradient algorithm occupies importance position in blind source separation.Natural gradient algorithm adopts fix-step,so they cannot resolve the contradiction between convergence speed and the error in the steady state.By building a nonlinear function relationship between the step size factor and the square sum of the kurtosis,the paper proposes an adaptive natural gradient algorithm.Computer simulation result confirms the algorithm’s validity,and shows that the algorithm’s performance is superior to natural gradient algorithm.

Key words: blind source separation, adaptive, learning rate, kurtosis