计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (36): 198-201.DOI: 10.3778/j.issn.1002-8331.2010.36.055

• 图形、图像、模式识别 • 上一篇    下一篇

基于阈值分割的脂肪肝超声图像分类方法

刘金珠1,王江河2,洪慧闻2,刘燕玲2,闵乐泉1,3   

  1. 1.北京科技大学 信息工程学院,北京 100083
    2.中国中医研究院西苑医院 肝病科,北京 100091
    3.北京科技大学 应用科学学院,北京 100083

  • 收稿日期:2009-07-21 修回日期:2009-09-08 出版日期:2010-12-21 发布日期:2010-12-21
  • 通讯作者: 刘金珠

Classification method of ultrasonic images of fatty livers based on threshold segmentation

LIU Jin-zhu1,WANG Jiang-he2,HONG Hui-wen2,LIU Yan-ling2,MIN Le-quan1,3   

  1. 1.School of Information Engineering,University of Science and Technology Beijing,Beijing 100083,China
    2.Hepatology Department,Xiyuan Hospital of China Academy of Chinese Medical Sciences,Beijing 100091,China
    3.School of Applied Science,University of Science and Technology Beijing,Beijing 100083,China
  • Received:2009-07-21 Revised:2009-09-08 Online:2010-12-21 Published:2010-12-21
  • Contact: LIU Jin-zhu

摘要: 研究了一种基于阈值分割的脂肪肝超声图像分类方法。该方法在最小化假阴性错误率的基础上尽量减小假阳性错误,获得服从正态分布的正常肝和脂肪肝图像灰度的置信区间。利用各自的区间阈值对超声图像进行分割,通过比较两幅分割图像进行分类。实验验证表明,不论是测试数据还是训练数据,该方法对正常肝正确识别率均为100%,对脂肪肝正确识别率均为96.3%。与BP神经网络方法比较表明,该方法在分类准确性上与神经网络方法相当,但比BP网络方法花费了更少的时间。

关键词: 脂肪肝, 超声肝图像, 分类, 阈值分割

Abstract: A classification method of ultrasonic liver image is studied based on threshold segmentation.Under the condition of minimizing the false-negative probability,the confidence intervals of gray levels which are normal distributions in normal and fatty liver images can be obtained by minimizing the false-positive rate.Then classify the images by comparing the segmented images with the interval thresholds.The experimental results show that the classification rate of normal livers reaches to 100% for testing or training data,the classification rate of fatty livers reaches to 96.3% for testing or training data.Compared with the Back Propagation Neural Network(BP NN) method,the method costs less time than BP NN method when they have the same performance.

Key words: fatty liver, ultrasonic liver image, classification, threshold segmentation

中图分类号: