计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (23): 203-205.DOI: 10.3778/j.issn.1002-8331.2010.23.057
周丽娜,黄 睿,李先华
ZHOU Li-na,HUANG Rui,LI Xian-hua
摘要: 与传统的多光谱遥感相比,高光谱遥感具有更高的光谱分辨率,能更好地进行地物分类识别。但是,当训练样本数与数据维数相当,或小于后者时,会导致协方差矩阵近似奇异或奇异,使得经典最大似然分类失效,需要对协方差矩阵进行修正。典型的协方差阵估计方法往往只选取总体协方差、类别协方差及其相应变形中的两种形式进行组合,未考虑多种形式共同对协方差阵估计的影响。提出将PSO算法应用到协方差阵估计中,考虑所有形式的共同作用,对组合参数进行优化。最后,通过高光谱数据的分类实验证明了方法的可行性和有效性。
中图分类号: