计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (22): 206-209.DOI: 10.3778/j.issn.1002-8331.2010.22.060
张玉荣1,2,谢 慧3
ZHANG Yu-rong1,2,XIE Hui3
摘要: 为视频序列匹配提出一个高效精确的最大公共子序列(Efficient and Effective Longest Common Subsequence,EELCS)算法。首先,利用矢量量化(Vector Quantization,VQ)将多维最大公共子序列算法(Multi-dimensional LCS,MLCS)中元素对匹配过程中的实际距离的计算简化成比较操作,较原始的最大公共子序列匹配算法(Original LCS,OLCS),该处理不仅可以继承MLCS的可应用到实际多维时序匹配问题中的优点,同时大大降低了匹配的复杂度;然后进一步区分待匹配序列中由于匹配子序列和未匹配子序列在时间轴上连续性而产生的差异;最后将该算法应用到视频片段的匹配中。实验结果表明,与具有代表性的基于时间规扭曲的最大公共子序列(Time-Warped LCS,T-WLCS)和连续最大公共子序列(Continuous LCS,CLCS)相比,该算法能较好地应用于视频序列的匹配。
中图分类号: