计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (22): 187-189.DOI: 10.3778/j.issn.1002-8331.2010.22.055

• 图形、图像、模式识别 • 上一篇    下一篇

基于自适应的保局投影的疲劳识别

吕婧婧,夏利民   

  1. 中南大学 信息与工程学院,长沙 410075
  • 收稿日期:2009-12-08 修回日期:2010-03-15 出版日期:2010-08-01 发布日期:2010-08-01
  • 通讯作者: 吕婧婧

Fatigue recognition based on adaptive locality preserving projections

LV Jing-jing,XIA Li-min   

  1. School of Information Science and Engineering,Central South University,Changsha 410075,China
  • Received:2009-12-08 Revised:2010-03-15 Online:2010-08-01 Published:2010-08-01
  • Contact: LV Jing-jing

摘要: 驾驶员疲劳驾驶是造成交通死亡事故的重要原因之一,研究驾驶疲劳自动识别具有重要的理论意义和应用价值。提出了一种新的基于自适应的保局投影的疲劳识别方法。采用保局投影进行疲劳特征提取,并利用邻域压缩或扩张方法自适应选取保局投影算法中的邻域,既加强了样本点间的关联性,又保持了局部几何结构;采用模糊k近邻的方法进行疲劳识别。在人脸疲劳数据集上进行实验,结果说明了该方法的有效性。

关键词: 疲劳识别, 保局投影, 自适应邻域选择, 模糊k近邻

Abstract: Driver fatigue detection is attractive in Intelligent Transportation Systems(ITS).It has great theoretical significance and practical application value.A new method is proposed for fatigue recognition based on adaptive locality preserving projections.Firstly,fatigue feature is extracted using locality preserving projections which adopt compression or expansion to select the neighborhoods.It can improve the correlativity of the data and maintain the local-geometric structure.Then,the fatigue expression is recognized with fuzzy k-nearest neighborhood classification.The result shows that it is powerful and effective for fatigue recognition.

Key words: fatigue detection, locality preserving projections, adaptive neighborhood selection, fuzzy k-nearest neighborhood

中图分类号: