计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (22): 12-15.DOI: 10.3778/j.issn.1002-8331.2010.22.005

• 博士论坛 • 上一篇    下一篇

快速混合Web文档聚类

杨瑞龙1,朱庆生1,谢洪涛1,2   

  1. 1.重庆大学 计算机学院,重庆 400044
    2.后勤工程学院,重庆 400016
  • 收稿日期:2010-04-02 修回日期:2010-05-28 出版日期:2010-08-01 发布日期:2010-08-01
  • 通讯作者: 杨瑞龙

Fast hybrid clustering for Web documents

YANG Rui-long1,ZHU Qing-sheng1,XIE Hong-tao1,2   

  1. 1.College of Computer Science,Chongqing University,Chongqing 400044,China
    2.Logistical Engineering University,Chongqing 400016,China
  • Received:2010-04-02 Revised:2010-05-28 Online:2010-08-01 Published:2010-08-01
  • Contact: YANG Rui-long

摘要: 提出了一种使用后缀树聚类算法优化K-means文档聚类初始值的快速混合聚类方法STK-means。该方法首先构建文档集的后缀树模型,使用后缀树聚类算法识别初始聚类、提取K-means聚类算法初始值中心值。然后,把后缀树模型的节点映射到M维向量空间模型中的特征项,利用TF-IDF方案计算基于短语的文档向量特征值。最后,使用K-means算法产生聚类结果。实验结果表明该方法优于传统K-means聚类算法和后缀树聚类算法,并具备了这些算法聚类速度快的优点。

Abstract: A fast hybrid clustering algorithm for Web documents clustering is proposed which optimizes the initial center values of K-means algorithm through STC algorithm.Firstly,the initial center values are extracted after the Web document set is clustered by STC algorithm.Secondly,by mapping the each internal node of suffix tree into M-dimensional VSM,each feature term weights is computed using TF-IDF extended with phrases.Finally,the final result is generated by K-means algorithm.The evaluation experiments indicate that the new hybrid algorithm is more effective on clustering documents than ordinary K-means and STC algorithm.Moreover,it is as fast as K-means and STC algorithm.

中图分类号: