计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (21): 152-155.DOI: 10.3778/j.issn.1002-8331.2010.21.043

• 数据库、信号与信息处理 • 上一篇    下一篇

量子行为粒子群算法在基因聚类中的应用

高倩倩,须文波,孙 俊   

  1. 江南大学 信息工程学院,江苏 无锡 214122
  • 收稿日期:2009-01-07 修回日期:2009-03-18 出版日期:2010-07-21 发布日期:2010-07-21
  • 通讯作者: 高倩倩

Application for gene clustering based on quantum-behaved particle swarm algorithm

GAO Qian-qian,XU Wen-bo,SUN Jun   

  1. School of Information Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China
  • Received:2009-01-07 Revised:2009-03-18 Online:2010-07-21 Published:2010-07-21
  • Contact: GAO Qian-qian

摘要: 在PSO算法的基础上提出的基于量子行为的QPSO算法,并将其应用到基因表达数据集上。QPSO基因聚类算法是将N条基因根据使TWCV(Total Within-Cluster Variation)函数值达到最小分到由用户指定的K个聚类中。根据K-means算法的优点,利用K-means聚类的结果重新初始化粒子群,结合QPSO和PSO的聚类算法提出了KQPSO和KPSO算法。通过在4个实验数据集上利用K-means、PSO、QPSO、KPSO、KQPSO 5个聚类算法得出的结果比较显示QPSO算法在基因表达数据分析上具有良好的性能。

关键词: 基因表达数据, 聚类, 基于量子行为的粒子群优化(QPSO)算法

Abstract: It proposes quantum-behaved particle swarm optimization QPSO algorithm on the basis of the PSO algorithm and applies it to a data set on gene expression.The proposed clustering algorithm partitions the [N] patterns of the gene expression dataset into user-defined K categories to minimize the fitness function of total within-cluster variation.Based on the merits of K-means algorithm and using K-means clustering to seed the initial swarm,combing QPSO,PSO to cluster data,it proposes KQPSO,KPSO algorithm.The experiment results on four gene expression data sets using K-means,PSO,QPSO,KPSO,KQPSO five clustering algorithms show that the QPSO-based clustering algorithm has a good performance in gene expression data analysis.

Key words: gene expression data, clustering, Quantum-behaved Particle Swarm Optimization(QPSO) algorithm

中图分类号: