计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (15): 41-42.DOI: 10.3778/j.issn.1002-8331.2010.15.013

• 研究、探讨 • 上一篇    下一篇

双线性对计算算法的优化

陈逢林,胡万宝   

  1. 安庆师范学院 数学与计算科学学院,安徽 安庆 246001
  • 收稿日期:2008-12-08 修回日期:2009-02-16 出版日期:2010-05-21 发布日期:2010-05-21
  • 通讯作者: 陈逢林

Refinements of algorithm for computing billear pairings

CHEN Feng-lin,HU Wan-bao   

  1. School of Mathematics and Computing Science,Anqing Teachers College,Anqing,Anhui 246001,China
  • Received:2008-12-08 Revised:2009-02-16 Online:2010-05-21 Published:2010-05-21
  • Contact: CHEN Feng-lin

摘要: 基于身份的公钥密码体制独特的优点使其成为PKI公钥密码体制后的一个新研究热点。基于身份的密码体制的实现基于双线性对的快速计算,Miller算法是一种计算线性对的有效算法。利用窗口宽度为w的NAF倍乘算法,结合Miller算法,提出一种有效提高线性对计算速度的方法,这种方法倍加中加法运算次数改进为原来的2/w。

关键词: 基于身份的密码系统, 椭圆曲线, Weil/Tate对, 非相邻表示型, Miller算法

Abstract: The identity-based public key cryptosystem becomes a new research focus on the current because of its unique advantages after the PKI cryptosystem.The realization about the identity-based cryptosystem is based on the rapid calculation of the bilinear pairing,and the Miller algorithm is an effective way to calculate the pairing.Combining the NAF algorithm about the window width w with Miller algorithm,the paper gives an effective method to improve the calculation speed about the linear pairing,and this method makes the times of the addition operators as 2/w of the original ones.

Key words: identity-based cryptography, elliptic curves, Weil/Tate pairing, non adjacent form, Miller algorithm

中图分类号: