计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (14): 148-151.DOI: 10.3778/j.issn.1002-8331.2010.14.043

• 数据库、信号与信息处理 • 上一篇    下一篇

基于概念格和条件信息熵的分类规则获取方法

房鹏杰,张素兰,张继福   

  1. 太原科技大学 计算机科学与技术学院,太原 030024
  • 收稿日期:2008-11-06 修回日期:2009-02-27 出版日期:2010-05-11 发布日期:2010-05-11
  • 通讯作者: 房鹏杰

Classification rule acquisition method based on concept lattice and conditional entropy

FANG Peng-jie,ZHANG Su-lan,ZHANG Ji-fu   

  1. School of Computer Science,Taiyuan University of Science and Technology,Taiyuan 030024,China
  • Received:2008-11-06 Revised:2009-02-27 Online:2010-05-11 Published:2010-05-11
  • Contact: FANG Peng-jie

摘要: 分类规则挖掘是数据挖掘中的重要研究内容之一,概念格是提取分类规则的一种有效工具。首先,给出了一种面向分类的概念格批处理构造算法CLBCR,并从概念格内涵中提取分类规则;其次,采用条件信息熵作为分类规则的度量因子,对分类规则进行排序,从而进一步提高了分类规则的分类效率;最后,实验验证了该方法,在不影响分类正确率的同时,有效地提高了分类效率。

关键词: 数据挖掘, 概念格, 批处理, 分类规则, 条件熵

Abstract: Classification rule mining is an important task in data mining,and concept lattice is an effective tool for mining classification rules.Firstly,a batch constructing algorithm of concept lattice oriented classification is presented and classification rule set is extracted from the intent of the concept lattice.Secondly,the rule order in the classification rule set is arranged by using conditional entropy as a measurement factor so that the classification efficiency is enhanced.In the end,the experimental results show the algorithm can effectively improve the classification efficiency under the classification accuracy unchanged.

Key words: data mining, concept lattice, batch algorithm, classification rule, conditional entropy

中图分类号: