计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (9): 51-52.DOI: 10.3778/j.issn.1002-8331.2009.09.014
• 研究、探讨 • 上一篇 下一篇
王廷明
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
WANG Ting-ming
Received:
Revised:
Online:
Published:
Contact:
摘要: 以公式真度为基础,给出了二值命题逻辑中基于条件真度的逻辑度量的真度表示式,提出了两类在信息Г下的误差不大于ε结论模式,证明了两类结论模式的等价性,并讨论了基于条件真度和真度的近似推理及其关系问题。
关键词: 二值命题逻辑, 真度, 条件真度, 有限理论, 伪距离, 近似推理
Abstract: This paper proposes the truth degree expression of the pseudo-metric in two-valued propositional logic,which are based on the truth degree.From the process of approximate reasoning,the equivalence of not greater than ε-value in two kinds of errors has also been proved.Meanwhile,using the finite theory,discuss the principal properties of the error’s conclusions which are not greater than ε under the Boolean calculation.
Key words: classical propositional logic, truth degree, conditional truth degree, finite theory, pseudo-metric, approximate reasoning
王廷明. 二值命题逻辑中基于条件真度的近似推理[J]. 计算机工程与应用, 2009, 45(9): 51-52.
WANG Ting-ming. Approximate reasoning based on conditional truth degree of formulas in classical propositional logic[J]. Computer Engineering and Applications, 2009, 45(9): 51-52.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/10.3778/j.issn.1002-8331.2009.09.014
http://cea.ceaj.org/CN/Y2009/V45/I9/51