计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (7): 146-149.DOI: 10.3778/j.issn.1002-8331.2009.07.044

• 数据库、信号与信息处理 • 上一篇    下一篇

粗糙集和神经网络方法在数据挖掘中的应用

周序生1,王志明2   

  1. 1.湖南工业大学,湖南 株洲 412008
    2.怀化职业技术学院,湖南 怀化 415000
  • 收稿日期:2008-08-01 修回日期:2008-10-16 出版日期:2009-03-01 发布日期:2009-03-01
  • 通讯作者: 周序生

Application of rough set and neural network in data mining

ZHOU Xu-sheng1,WANG Zhi-ming2   

  1. 1.Hunan University of Technology,Zhuzhou,Hunan 412008,China
    2.Huaihua Vocational and Technical College,Huaihua,Hunan 415000,China
  • Received:2008-08-01 Revised:2008-10-16 Online:2009-03-01 Published:2009-03-01
  • Contact: ZHOU Xu-sheng

摘要: 提出了一种基于神经网络和粗集的数据挖掘新方法。首先利用粗集理论对原始数据进行一致性属性约简,然后使用神经网络对数据进行学习,并同时完成属性的不一致约简,最后再由粗集对神经网络中的知识进行规则抽取。该方法充分融合了粗集理论强大的属性约简、规则生成能力和神经网络优良的分类、容错能力。实验表明,该方法快速有效,生成规则简单准确,具有良好的鲁棒性。

Abstract: A new method of data mining based on rough set and neural network is proposed.Based on the rough set theory,attribute reduction is processed on data under the consistent conditions.Then neural network is used to study and predict data,at the same time to reduce the attributes under the inconsistent conditions.Finally rule knowledge in the neural network is extracted by using rough set theory.The method mixes rough set’s strong attribute reduction,rule extraction ability and neural networks classification,robustness ability.Experimental results show that this algorithm can produce more effective and simpler rules quickly and possesses good robustness.