计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (6): 131-133.DOI: 10.3778/j.issn.1002-8331.2009.06.037
杨小明1,施 莹2
YANG Xiao-ming1,SHI Ying2
摘要: 在网络异常检测中,为了提高对异常状态的检测率,降低对正常状态的误判率,提出一种基于粒子群优化算法训练模糊神经网络进行网络异常检测的新方法。在对模糊神经网络训练中采取PSO算法和梯度下降算法相结合的方法,充分发挥PSO全局寻优的能力和梯度下降局部细致搜索优势。实验数据采用KDD CUP99数据集,实验结果表明,该学习算法与传统的梯度下降法(GD)相比,收敛速度快,具有更好的全局收敛性,提高了异常检测的准确性,同时该方法对于新的异常也有较高检测率。