计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (34): 50-52.DOI: 10.3778/j.issn.1002-8331.2009.34.016

• 研究、探讨 • 上一篇    下一篇

免疫粒子群算法在神经网络训练中的应用

潘 昊,郑 明   

  1. 武汉理工大学 计算机科学与技术学院,武汉 430070
  • 收稿日期:2008-07-04 修回日期:2008-09-25 出版日期:2009-12-01 发布日期:2009-12-01
  • 通讯作者: 潘 昊

Application of immune particle swarm optimizer in neural network training

PAN Hao,ZHENG Ming   

  1. School of Computer Science and Technology,Wuhan University of Technology,Wuhan 430070,China
  • Received:2008-07-04 Revised:2008-09-25 Online:2009-12-01 Published:2009-12-01
  • Contact: PAN Hao

摘要: 神经网络能够用来检测结构损伤,但是其训练方法容易陷入局部最优。粒子群算法具有全局搜索能力,将免疫系统中的抗体抑制机理引入粒子群算法以保持粒子多样性,采用免疫粒子群算法(ImPso)训练前向神经网络。计算机仿真结果显示,训练后的网络性能优于使用一般BP算法训练的网络。

关键词: 前向神经网络, 粒子群优化算法, 免疫系统, 抗体抑制

Abstract: Feedforward neural network can be used to detect structural damage,but the gradient descent method in traditional BP algorithm is vulnerable to local optimum.Particle Swarm Optimizer(PSO) can be capable of searching optimum in global scope,by introducing clone suppression in immune systems into PSO to maintain the diversity of particles.The hybrid algorithm(ImPso) can be used to train feedforward neural network.The computer simulation results show that the performance of neural network with the hybrid algorithm(ImPso) is better than the performance with traditional gradient descent method.

Key words: feedforward neural nework, Particle Swarm Optimization(PSO), immune systems, clone suppression

中图分类号: